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SUMMARY

An analysis is given which enables the design of dual-rotation propellers. It
relies on the use of a new tip loss factor deduced from T. Theodorsen's measurements
coupled with the general methodology of C. N. H. Lock. The analysis eliminates the
possibility of obtaining an infinite chord as would be found by using the tip loss
factor advocated by Lock. In addition, it includes the effect of drag in optimizing
and does not require the averaging of various quantities across the radius in carrying
out off-design calculations. Thus, a combination of the Lock and Theodorsen formula-
tions is described and the possibilities are explored. Some values for the new tip
loss factor are calculated for one advance ratio. The calculation is simple and
straightforward.

INTRODUCTION

The current interest in fuel-efficient air transportation has given rise to a
number of studies aimed at defining the capabilities of large propeller-driven air-
craft employing advanced, aerodynamic and engine/propeller concepts. An opportunity
for designing more efficient wings and propellers is provided by new design tools
which utilize nonlinear transonic-flow codes and improved materials and structural
concepts. The development of techniques for achieving more efficient wings has
received much attention, particularly in the NASA Aircraft Energy Efficiency (ACEE)
Energy Efficient Transport (EET) Program carried out over the past 4 or 5 years.
Propeller theory, on the other hand, has been pretty well ignored since the early
fifties. Much more research needs to be invested in propeller aerodynamics to bring
propeller design up to the level of sophistication achieved by current wing-design
methodology.

There are many papers treating both single- and dual-rotation propellers.
Analyses pertinent to the present investigation that treat single-rotation propellers
can be found in references 1 to 6, and in the references therein. Dual-propeller
analyses can be found in references 1, 3, 7, and 8. In references 1 and 7, the prob-
lem of minimum induced energy loss is treated at length. Provided in reference 8 is
an important treatment of dual-rotation-propeller aerodynamics. A treatment of the
calculus of variations that is well suited to establishing Betz' condition (eq. (1.3)
in ref. 9) for the optimization of both single- and dual-rotation propellers is given
in reference 10.

Overall, it would seem that the theory of single-rotation propellers is slightly
more advanced than that for dual-rotation propellers. The theories of Lock and
Theodorsen, when applied to dual-rotation propellers, have their shortcomings. For a
dual-rotation propeller, any attempt to derive an optimization formula (Betz' con-
dition) based on the Lock formulation of dual-rotation aerodynamics will be found, in
practice, to yield a planform which develops infinite chords. The reason is that the
tip loss factor used by Lock is only known for single-rotation propellers and is
inadequate for dual-rotation propellers. Theodorsen's analysis does not permit the
optimization of a dual-rotation propeller with drag considered and, in making off-
design calculations, requires the use of the mass coefficient which is averaged over



the radius. The purpose of this paper is to combine the best features of those two
methods into a single, modified theory which eliminates the shortcomings just
described.

A way has been found to determine Lock's tip loss factor for dual-rotation pro-
pellers from Theodorsen's measurements. In order to accomplish this, it was neces-
sary to show that the. Theodorsen formulation applies to the setup in which one pro-
peller is behind the other. This new Lock/Theodorsen tip loss factor eliminates the
infinite chords and permits an analysis which includes drag and eliminates the need
for an averaged quantity. Thus, a combination of Lock's and Theodorsen's formula-
tions is described and the possibilities are explored. Some values for the new tip
loss factor are calculated for one advance ratio. The calculation is simple and
straightforward.

SYMBOLS
A abbreviation variable (egs. (3))
b equation (B23)
B number of blades in propeller
c chord of airfoil
Cp drag coefficient of blade
Cy lift coefficient of blade
Cp power coefficient, QQ/pn3d5
d diameter of propeller
db drag of blade element
J advance ratio, V/nd
k number with same value at all radii to blade sections
K(x) circulation function used by Theodorsen (refs. 1 and 7)
K' denotes something to be held stationary, in sense of calculus of variations
2 reciprocal of lift-drag ratio
dL 1lift of blade element
n revolutions per second
dp power loss of blade elements




p',q',r',s' elementary functions of propeller parameters and functions
(see eq. (16))

do torque on blade elements

r radial coordinate

R tip radius

s solidity of either component, Bc/27r

t temporary variable (see eq. (7))

u,v components of interference velocity of front propeller on back propeller,

or vice versa (fig. 1)

v forward speed, or advance velocity (fig. 1)

\ trailing helix displacement velocity

w = w/V

wi interference velocity of either airscrew on itself
W resultant velocity at blade element (fig. 1)

Wy W for light loading limit (fig. 1)

bid = r/R

o angle of attack of two-dimensional airfoil

g total induced angle (see eqg. (B9) and fig. 1)

Y self-induced angle (see egs. (B7) and (B8) and fig. 1)
COy equation (B18)

n efficiency

5] blade angle (no load)

0] mass density of air

o} product of solidity and 1lift coefficient, sCj,

¢O see equations (B9) and (B10) and figure 1

¢ resolving scalar (eqg. (9))
g0



XO tip loss factor (see eqg. (Bl)), X(¢O)

9] angular velocity

Subscripts:

B back propeller

c mean value for dual-rotation pair

F front propeller

S single propeller

Y, 2 either front airscrew and back airscrew, respectively, or vice versa in

equation (B17)
1 induced

2 drag

OPTIMIZATION FORMULA

Betz' condition concerns the effect of making small changes in the chord or the
blade angle of a propeller at various radii. It gives a mathematical statement that
must hold at each radius when the changes have been made in such a way that the pro-
peller efficiency is highest. For single-rotation propellers, Betz' condition can be
derived intuitively as was equation (1.3) in reference 9; however, the more analytical
approach of appendix A is preferable, for dual-rotation propellers, especially if the
propellers are not assumed to be alike front and back. In this paper, only changes in
the chord are considered. The lift coefficient is presumed fixed by airfoil
considerations.

The equation by which a dual-rotation propeller can be optimized will now be
developed from Betz' condition for dual rotation. This condition is

d_(ipz . i‘i@)
_ do\dr dr

k = (1)
0 5 @)

do\dx

which is equation (A3) in appendix A.

Equation (1) has to be true at any radius r along the blade. In particular,
the constant k 1is to be the same all along the blade. The exact choice of k
involves matching the power absorbed by the propeller to the power output of the
engine.

The various items in equation (1) will now be selected from appendix B, which
gives the appropriate part of Lock's theory. Familiarity with this appendix and with



figure 1 (taken from ref. 8) is assumed. In equation (1), dPr and dPp represent

both induced dp; and airfoil-drag dP, power losses. The induced power loss for
both propellers is determined by equation (B33):

dp

1 2
(aaf)c = 2Ab0“ (1 + Xy cos 2¢3) (2)

where

L
% (3)
1/b = 4XO sin ¢q

Y = b0 (see eq. (B23))

Lock's tip loss factor XO is of primary importance and more will be said about it
toward the end of this section. The airfoil-drag power loss for the combination can
be similarly written, from equation (B25),

—=] = 2acf (4)
dr /¢

where

L = cp/cy, (5)

Adding equations (2) and (4) gives the term to be differentiated in the numerator of
equation (1); thus,

(dPF dPB)
5t s ) = 2R0(t10 + Q) (6)
where

ty = b(1 + X, cos 2¢0) (7)

The power input to either propeller is given by equation (B26) as

Q(QQ) N o b (8)



where

¢q0 = sin ¢y + £ cos ¢, (9)

Equations (6) and (8) are substituted into equation (1) and are differentiated with
respect to O. The result is

2(2tlo + )
¢qo/sec b0 (10)

Equation (10) can be solved for ¢ to obtain

1
= ko cos ¢, - 2
0 0
O’.—_2—————q_~4x‘--v (ll)
2tl

Substitution of equation (7) into equation (11) yields the optimization formula for
the dual-rotation propeller,

1
= ko cos ¢, - &
2 ""g0 "7 "0, e (12)

o= 1 1 24 2
—_—— + - i
2 i ein ¢0<Xo cos ¢O sin ¢O)

in which the third of egquations (3) was used.

Equation (12) is used to determine the blade-chord distribution once the Cy,
distribution over r is known. As noted for equation (1), equation (12) has to be
true for all values of r < R, and in particular, k 1is the same for all r with a
value that has to be found by trial and error to make the power absorbed by the pro-
peller equal to the engine power output. The power absorbed is found by graphically
or numerically integrating equation (8) over the radius for both propellers (i.e.,
the power loss for both propellers is found by multiplying equation (8) by 2). It is
helpful to note that the power absorbed should increase with k. Further note that
instead of regarding lift coefficient as given, the chord distribution could have been
prescribed and then the optimum 1lift coefficients determined; the airfoils might then
be optimized for these lift coefficients. Consider now the function Xo-

LOCK'S TIP LOSS FACTOR XO

At a given advance ratio J, the function Xo is a function of x only. It is
the ratio of the induced angle of attack with an infinite number of blades to the
induced angle of attack for whatever number of blades happens to be used. Stated
another way, it is the average rate of fall of potential, taken around the circle of
the blade element, divided by the normal derivative of the potential at the vortex
sheet. 1In view of these physical meanings, it seems obvious that Xo must be a
significant link between single- and dual-rotation aerodynamics.



It might be thought that the Xo for dual-rotation propellers ought to be given
a new symbol since the significance seems so different from that in single-rotation
propellers. Strangely, however, the new XO is still a single-rotation function
because it is merely the Xg associated with a single-rotation propeller. This
single-rotation propeller, however, does not have the optimum single-rotation pro-
peller loading; it has instead the optimum dual-rotation loading which could be
obtained from Theodorsen's circulation function X(x). This radical change in load-
ing makes a considerable difference in the function XO.

Applicability of Theodorsen's Theory to Dual-Rotation Propellers

As pointed out in the Introduction of reference 1, Theodorsen's work was based
on the hypothetical situation in which the dual-rotating propellers are operating in
the same plane. It was noted that the applicability of Theodorsen's theory to other
situations requires further confirmation. This matter will now be considered because
it is pertinent to the determination of Xqg for dual-rotation propellers operating
one behind the other on a single axis.

Observe that, when the propellers are in the hypothetical situation of being in
the same plane, equations (B32) would be symmetric; thus,

)
ar F
(dpl)
dr /g

But, for the combination obtained by adding these two equations, the result would
again be equation (B33) in appendix B, with no change in equation (2). Therefore,
the previous derivation for the optimizing equation would proceed with no change;
equation (12) for ¢ would be the same whether the two propellers were in the same
plane or not. So the optimum planform defined by Theodorsen's theory applies without
reservation when the two propellers are mounted one behind the other.

H

AOY(l + Xo cos? 9 = Xo sin? ¢O)

I

AOY(l + Xo cos? ¢O - Xo sin? ¢O)

Determination of XO for Dual-Rotation Propellers

The only quantity in equation (12) that cannot be considered known is X, which
first appears in equation (2). The single-rotation values for Xo cannot be used,
as already noted, but Xo for dual-rotation propellers can be determined from a com-
parison of the Lock and Theodorsen theories.

If the physics and mathematics leading to eguation (12) are correct, this equa-
tion must produce, with drag neglected, the same results as are obtained from
Theodorsen. On page 87 of reference 1 (the equation just before eq. (12)), Crigler
gives the following equation for light loadings:

wV K(x)

_ v
sCLWO = GWO = Tndx



or

On the other hand, equation (12) with drag neglected is

%—k¢qo cos 9g
G = - = o (14)
2 ———f————(—— + cos? bg - sin? ¢O)

Kk —E = ust (15)

where
\
'o= l—¢ cos ¢
p 2 g0 0
S S
4 sin ¢O
> (16)
o= 2 2
= cos® ¢g sin® ¢q
J .
s' = E;-K(x) sin ¢gq )
In the last of equations (16), K(x) comes from the electrical measurements of
Theodorsen (fig. 2). Equation (15) can be solved for XO:
_ qlsl
XO = (17)

(k/;v)pl - qlslrl

An independent derivation has been made of the important equation (17) for
determining XO from Theodorsen's electrical measurements. This derivation deals
directly with the induced velocities and it is interesting that Betz' condition does
not play any part, although it did in the earlier derivation. For details, refer to
appendix C.



Everything can be regarded as known in equation (17) except the ratio k/w,

which will now be found from somewhat tangential considerations. First note that,

with drag neglected, the efficiency decrement can be determined by using equations (2)

and (8),
dp
- ar _ 2b (1 + Xy cos 2¢O)O 3 2t10
20 %%' 2¢q0 cos ¢O 2¢q0 cos ¢0

If equation (11), with & = 0, is substituted into equation (18) for o, there
results

,_,
]
3
1l
N
=

In addition to equation (19), another relation can now be found between n
and w. In figure 3 (which is taken from ref. 1), 1N is seen to be practically
linear with w for light loadings. The slope dn/dw is taken to be

Therefore, from equations (19) and (21), it follows that

or

L=
il
N
o

With this result, everything is known in equation (17).

(18)

(19)

(20)

(21)

(22)

The tip loss factor XO defined by Lock can now be calculated from the electri-
cal measurements of Theodorsen (refs. 1 and 7) by using equation (17). Some numerical

values have been calculated and are discussed in "Results" and in appendix D.



Limiting Forms of XO

The behavior of XO near x = 0 and 1 will now be investigated.

x = 0.- It can be seen that p' =0 and r' = -1, since ¢O =m/2; and q' = 1/2,
while s' +> o (see egq. (16)). Therefore, equation (17) shows Xg =1 at x = 0.
This is as it should be, since Xp = 1 would be true in the vicinity of a vortex on
the axis; this vortex is a feature of the optimum dual-rotation propeller.
x = 1l.- The functions p', gq', and r' are all finite (see eq. (16)); but
s' =0 at x =1 because K(x) is zero there. Equation (17) now shows clearly
that X5 = 0 at x = 1. This is as it should be from the definition of Xg,.

All the equations necessary for the optimization of a dual-rotation propeller,
with drag considered, have now been obtained. But for complete definition of the
propeller (i.e., to specify the blade-angle distributions, front and back, in addition
to the chord distribution), the equations for the induced angle of attack By are
needed. These equations are picked out of appendix B and given explicitly in the
section "Dual-Rotation Propeller Calculations,”" where they are also needed for other
purposes, like performance calculations.

Recapitulation
In the optimization equation (eqg. (12)), everything on the right may be regarded
as something given, except XO, which is found from equation (17). In using equa-

tion (17), equation (22) has to be used. It was encouraging to find that Theodorsen's
work could be applicable to the setup where one propeller is behind the other. It
would be possible to determine XO for all possible dual-rotation propellers, before-
hand, using equation (17); then, in this sense, everything on the right in equa-

tion (12) would be known.

DUAL-ROTATION PROPELLER CALCULATIONS
Optimum Propeller

In order to calculate the optimum chord distribution, it is only necessary to be
given the values of J and Cp and the "airfoil data." The "airfoil data" are
actually preselected in the sense that the airfoil and the value of C;, Cp, or o
have been preselected to produce a desirable condition, like (Cr/Cp)paxs at each
radial station along the wing. Then, O can be calculated from equation (12) using
XO obtained by the procedure given in appendix D.

If the airfoil data are limited and therefore erratic, this will be reflected in
the shape of the blade planform. This could cause the blade to be unacceptably
erratic, reguiring smoothing and implying a questionable smoothing of airfoil data.
The sensitivity of the airfoil sections to Mach number and Reynolds number may
restrict the operating range of altitude and flight velocity at which the propeller
will be optimum. For instance, an operating condition could be envisioned in which
the airfoils are supposed to be supercritical over much or all of the blade so that
the planform might take a very special shape.

10




The no-load blade angle is given by

ey + (Torsional deflection) = ¢O + By + o (23)

in which the total induced angle B is given by equation (B27) (taking account of

eq. (B3l)) so that Y
= +
By Y(1 COy) (24)
and further, from equation (B23),
= bo(l +
By = DO(L + L) (25)
The COy are defined by the equations immediately following equation (B28);
thus,

2
COF = XO cos ¢O

(206)
- 2 .02
Cor = Xo(cos ¢O - 2 sin ¢O)
Then equation (25) can be written out, for use in equation (23), as
Bp = bo(1 + Zor)
(27)

By = bO(1 + Cnp)

Note that equations (27) do not depend on any averadged quantities like the "mass
coefficient" (compare with p. 86 in ref. 1, relative to interference velocities).

The detailed procedure for optimization is given in appendix E.

Nonoptimum Propeller, Given Propeller, Off-Design Conditions

Mathematically, these problems involve replacing equation (12) by equation (23).
The resulting system, comprising equation (23), two new induced angle-of-attack
formulas in place of equations (27), and the two-dimensional airfoil data (which may
come from either wind-tunnel test or from airfoil theory) are to be solved by itera-
tion,' perhaps starting with the assumption that the By are zero. Then, an initial
ay can be calculated from equation (23) and a starting CL is taken from airfoil
data. Next, an initial By can be found which yields new values of ay and CLy
and establishes an iteration loop.

11



A new formula for By is needed because the CLy are no longer the same front

and back (although s 1is). From equation (B27) it is seen that the formulas (27)

for By now become

w
|

= bs(CLy + COyCLz)

or

Bgp = bs(Crp t+ TorCrp)
(28)

Bg = bs(Cyp + TopCrp)

A new form of equation (23) should be added to these equations because now a, are
not the same front and back:

. . _ +
ey + (Torsional deflection) ¢O By + ay (29)

This equation is usually very sensitive because Gy and ¢O are often nearly the
same. In particular, the torsional deflection may be considerable.

The nonoptimum propeller calculation is not simple because it is iterative and
requires the storage of airfoil data. There is also a more fundamental difficulty:
the circulation function has only been determined for the Theodorsen optimum pro-
peller. The more the propeller and/or operating condition departs from Theodorsen's
optimum, the more questionable this calculation is. However, experience with single-
rotation propellers indicates that the results of this calculation will hold sur-

prisingly well.

A more rigorous, but clearly more difficult, method would include arbitrary
propeller theory in the loop (as given in refs. 2 and 4). Then, each time a circula-
tion distribution is obtained, a rigorous induced velocity and By would be found.

This simpler procedure should be of great value in getting started and often may be
sufficient without the introduction of arbitrary propeller theory.

Lock's methodology (ref. 8) appears to make calculations for dual-rotation pro-
pellers essentially like those for single-rotation propellers.

See appendix F for detailed procedure of nonoptimum propeller calculations.

RESULTS
The function XO has been calculated for dual-rotation propellers, with

J = 5.1693 at several values of x, by using the procedure outlined in appendix D.
There were four blades front and four back.

12



The calculated values of Xo are shown in figure 4 plotted against x. Also
shown is the corresponding curve for single-rotation propellers. The curves are seen
to differ considerably. Note that since sin ¢O is a function only of x at a
given J, Xo can also be plotted against sin ¢O as in figure 5.

Shown in figure 5 (fig. 5 of ref. 6) are the conventional contours of Xp for
single-rotation propellers. The arrows show how the base points (single rotation)
are shifted for dual rotation. The arrow points and the base points are calculated
for the same value of J; hence, the shift is vertical. Observe that by performing
the calculation of XO at a sufficient number of values of J, a new set of curves
can be mapped like the ones for single-rotation propellers.

DISCUSSION
The paper is now largely complete. Some isolated topics will now be taken up in
the light of what has been said in previous sections.

Question of Infinite Chords

If equations (16) and (17) are substituted in equation (12) with £ = 0, there
results

o= 2L gin ¢y x(x) -~ (30)
k/w T
but, since
o = sCy,
and
s = B(c/4)
X

it follows that

=1 k.

c
- — J K(x) sin ¢ (31)
d BCp, k/ 0

Since all gquantities on the right of equation (31) are finite, it is clear that c¢/d
is finite. There can be no infinite chords when XO is determined in the way given
in this paper.

Competition Between Single and Dual Rotation

The equations given herein degenerate easily into single rotation without change
in form. It is only necessary to see that any term involving COy is to be removed.

13



The optimization of single- or dual-rotation propellers is a simple calculation;
therefore, the safest and best method of evaluating single- and du@l—rotation pro-
pellers would seem to be a simple comparison of various complete propeller optimiza-
tions as to efficiency, weight, and cost, rather than an attempt to discern trends in
the equations. Cost might be set proportional to the total number of blades. Weight
might be strongly influenced by J, but it is not too clear because the propellers
turn slower with increased J and centrifugal stresses are relieved.

In particular, the two curves in figure 4 labeled "single" and "dual" tell
nothing of the relative merit of single and dual rotation, because they are both for
the same advance ratio and the total number of blades for the single-rotation pro-
peller is only half that for the dual-rotation propeller. The single-rotation pro-
peller is likely to have twice the number of blades as either of the dual-rotation
pair and the values of J might differ considerably.

Comparison of Xy for Single and Dual Rotation

The most characteristic difference between the two kinds of X5 is that the
values for single rotation greatly exceed unity for inboard radii while the wvalues for
dual rotation stay below unity or exceed it only slightly. The reason for this dif-
ference is that Xp = 1 marks the radius where, for a high-J propeller, the benefit
from dual rotation completely cancels self-induced losses.

This cancellation can be seen in the equations for the induced power loss and the
induced angle of attack. The axial losses do not participate in the dual-rotation
action and tend to make the cancellation less clear so that, for simplicity, the
propeller of very high J will be considered. Now, ¢O -~ /2 and cos 2¢O > =-1;
therefore, equation (2) for the induced power loss becomes

dp
1y 209 -
(dr )C = A2b0o“ (1 Xg)

which shows that the induced power loss becomes negative when X, exceeds unity.
Clearly, the optimized chords will become large where Xo = 1. Any optimization
process must have built-in controls for preventing the catastrophe of infinite chords
at Xp = 1. Theodorsen's electrical-analogy approach bridged all this mathematical
difficulty and went directly to the ultimate solution.

These matters can be seen again in equations (26) and (27) for the induced angle
of attack. There it is seen that the place on the blade where XO = 1 is where the
sum of the induced angles of attack of front and back propellers is zero. Again,
these remarks apply to the very-high-J propeller where the beclouding effect of the
axial losses is absent.

Compromised Optimum Propeller
It seems inevitable that the optimum dual-rotation propeller will be compromised
because of the awkwardly large inboard chords. In other words, the chords inboard

may be arbitrarily reduced for a practical reason, like a prohibitively great length
of propeller shaft needed to accommodate the large inboard chords.

14



Furthermore, it is true that the efficiency is not very sensitive to variations
of the planform from the optimum, as in wings where the straight-tapered planform is
almost as good as the elliptical planform. So, why is the optimum given so much
attention in the literature? Perhaps the answer is that the optimum serves as a ref-
erence by which compromises can be kept under control. Thus, most of the work of
aerodynamic optimization may be done from the standpoint of the given propeller
(app. F) with relatively little attention given to the optimum propeller (app. E).

The function XO is indispensable in calculating the performance of the given
propeller (app. F), yet it is determined from measurements for the optimum propeller.
It is somewhat paradoxical to use off-design calculations to optimize a propeller
when these off-design calculations make use of a XO determined from optimum pro-
peller results. The point is single-rotation experience indicates X, can be
"stretched" to provide answers that are useful in off-design conditions, although
this may not extend as well to dual-rotation propellers.

CONCLUSIONS

The Theodorsen and Lock treatments of dual-rotation propellers were combined,
and it is possible to draw the following conclusions:

1. The function Xo, tip loss factor, used in the Lock treatment can be deter-
mined for dual-rotation propellers from Theodorsen's electrical analogy. Formerly,
these functions only existed for single rotation and were inadequate for dual
rotation.

2. The effect of airfoil drag can be included in the optimization of dual-
rotation propellers.

3. Combination of the Lock and Theodorsen treatments enables the off-design per-
formance of dual-rotation propellers to be estimated without reliance on an averaged
guantity, such as the mass coefficient advanced by Theodorsen. The mass coefficient
has only one value for the whole propeller disc.

4. Conclusion 3 also applies to the calculation of the blade angles of optimum
dual-rotation propellers.

5. From the Lock treatment of dual-rotation propellers, it can be shown that the
optimum planform is the same whether the two propellers are in the same plane or one
behind the other.

6. The combination of the Lock and Theodorsen theories appears to enhance both
of those works.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

November 23, 1981
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APPENDIX A

CALCULUS OF VARIATIONS APPROACH TO MAXIMUM EFFICIENCY

The quantity that is to be minimized is the total power loss for both propellers

j’R (dpF . dPB) 5
dr dr o

0

The quantities that are held constant in the process are the power absorbed for both
propellers,

The latter two are not summed. They are held constant individually, but it is not
stated at this point what these constants are. The chords, and hence 0, are not yet
assumed to be the same front and back.

Chapter 6 of reference 10 will be followed with particular emphasis on
sections 6.2 and 6.5. In these sections, there is unfortunate, but probably neces-—
sary, rotation of the meanings of symbols. The independent variable O becomes vy
and the dependent variable r becomes x, in paragraph 6.5. But in paragraph 6.2,
x and y represent dependent variables like 0, and t represents the independent
variable.

For K' (in ref. 10 K is not primed),
dp ap dQ do
F B F B
K' =|l—+ —| + -— + -— Al
(dr dr ) kp L dr kp & dr (A1)

in which the dp and dQ depend on JC.

Then for Euler's equation (eq. (6-15)) in the reference,

IK' d 9JK’

o0 dt aor

There is no g, in this problem, so the second term is zero. The Euler equation
becomes

16



APPENDIX A

Since there are two 0O's (Op and OJgp), there are two Euler eqguations. Thus,

oK'
— =0
BOF

and
oK'
—— =0
30B

Now the sum of the power losses depends on both Op and Opr but the power absorbed
by the front propeller does not depend on Op and vice versa. The two Euler equa-
tions then become

9 /dPF dpg h

d dQF) _
dop\ar | ar ) * kp 8 BOF(dr =0
and > (A2)

3 [9Fr dPB) 3 (dQB>
30B<dr * ar + kg e 90 \dr + 0 p

In these equations, the dP and dQ are taken from appendix B, then equa-
tions (A2) are two relations defining Op and Jg as functions of r. When O is
the same front and back as in the text, the two equations become one (Qp and Qp are

the same when Op = Og in the approximation accepted). Then equations (A2) become
dp dp
d F B a fdag
=+ —= —l==] = a3
dO(dr dr ) kG do(dr) 0 (A3)

which, except for the nonessential sign of k, is the same as equation (1) in the text
and is the desired Betz condition.

17
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INTERFERENCE VELOCITY FOR A CLOSE PAIR
OF CONTRA-ROTATING AIRSCREWS
by
C. N. H. Lock
The British Crown holds the copyright for the report, R & M No. 2084, which is

reproduced in this appendix with permission of the Controller of Her Britannic
Majesty's Stationery Office.
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Interference Velocity for a Close Pair of Contra-rotating

Airscrews
By
C. N. H. Lock, M.A., F.R.Ae.S.,
of the Aerodynamics Division, N.P.L.

Reports and Memoranda No. 2084
22nd July 1941

Summary—A method is developed of calculating the performance of a pair of contra-rotating airscrews, closely
analogous to that described in R. & M. 2035? for a single airscrew. The assumptions made are considered to be
theoretically justifiable if the interference velocities are so small that their squares and products may be neglected.
It is.hoped to compare calculations by the present method with experimental results.

The equations have been applied by an approximate single radius method to give the difference in blade setting
between the front and back airscrews for equal power input ; a comparison is also made between the efficiencies of
single- and contra-rotating airscrews.

1. Introduction.—The present note contains equations for a close contra-rotating pair of air-
screws based on the same assumptions as those of R. & M. 1674! and 1849?, together with the
following special assumptions. These assumptiors appear to be justifiable when the interference
velocities are considered as small quantities of ‘the first order of which squares and products
may be neglected.

(i) The interference velocities at any blade element may be calculated by considering the
velocity fields of the two airscrews independently and adding the effects.

(i) Either airscrew produces its own interference velocity field which so far as it affects the
airscrew itself is exactly the same as if the other airscrew were absent and includes the usual
tip loss correction.

(iii) Added to this is the velocity field of the other airscrew. Since the two are rotating in
opposite directions, the effect will be periodic and its time average value may be taken to be
equal to the average value round a circle having a radius of the blade element.

(iv) In considering the interference of either airscrew on the other, it is necessary to resolve
the mean interference velocity into axial and rotational components.

The average value round a circle of the axial component interference velocity varies slowly
through the airscrew disc. It is therefore reasonable to assume for the axial component for a
close contra-rotating pair that the effect of either airscrew (y) on the other (z) is equal to the mean
axial component in the plane of the airscrew disc of (y).*

The average value round a circle of the rotational component is zero® at any distance in front
of the airscrew disc and has a constant value at any distance behind, this value being twice
the mean effective value for the airscrew blade sections. It is therefore assumed as regards the
rotational component that the effect of the rear airscrew on the forward airscrew is zero ; the
efiect of the forward airscrew on the rear airscrew is equal to twice the mean value of the rotational
component in the plane of the disc of the forward airscrew with its direction reversed.

* Varying degrees of closeness might be allowed for empirically by multiplying #, by (1 — ) and u; by (1 4 u), where
u is a parameter -varying from a small value for a close pair to a value near unity for a distant pair.

(76164) A
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. 2. Equations of motion will now-be written down on the lines of the above assumptions using
as far as possible the ordinary notation (see Fig. 1). In order to maintain the greatest possible
degree of generality the equations will be developed to as late a stage as possible on the basis
of assumptions (i) and (ii) only. Thus either airscrew is subject to its own interference, velocity
w,, which is normal to W (Fig. 1) and is given by the usual equation

w, = sC. W /4xsin ¢ ; .. . .. .. .. .. .. .. (1)

in addition it is subject to the interference velocity of the other airscrew whose axial and rotational
components will be denoted by « and v.

The values of # and v according to assumptions (iii) and (iv) may be obtained as follows. The
mean value @, of w, taken round the circle of the blade element is given by the equation

w, = sC, W[4 sin ¢
=’€w1, .. . .o .. .. .. P . .o .o (2)

and is in the same direction (normal to W) as w,.* Then according to assumptions (iii) and (iv),
denoting the front and back airscrews by suffices ¥ and B (Fig. 1, b and ¢),

Up = Wy COS $p

== %405 COS ¢p, .. e e .. .. .. .. .. (3)
Up = %W COS by, (4)
ve=0, .. .. .. .. .. .. .. .. .. .. (5)
vy = — 2x.w, . sin ¢, (6)

In what follows the general notation (%, v) will be retained as long as possible.

The general equations will first of all be obtained in a form convenient for ultimate reduction
to a first order theory analogous to that of R. & M. 20353 using the following notation. Write
for either airscrew

w,=Wtany , .. .. .. .. .. .. .. . .. (7)
(Fig. 1) which by equation (1) implies also

sC,=4xsin ¢ tan y . .. .. .. .. .. .. .. .. (8)
Write also (as in R. & M. 18492

¢ = ¢ + B, .. .. .. .. . .. . .. .. (9)
where

V=rQtan ¢,. .. .. .. .. .. .. . .. .. (10)

Resolving parallel and perpendicular to the direction of W (Fig. 1) for either airscrew?,
W=rQsecd,cos +using —vcose¢ , .. .. .. .. .. (1D
w,=Wtany =rQsec ¢, sin § —ucosé —vsindé , .. .. .o (12)

where, if assumptions (iii) and (iv) are made, # and v are given by equations (3-6).

* Strictly speaking the value of ¢ corresponding to u, v will differ from that appropriate to w, but the difference is of
the second order in w,/W and will be ignored.

t Varying degrees of closeness might be allowed for empirically by multiplying u#, by (1 — x) and #; by (1 + #)
where 4 is a parameter varying from a small value for a close pair to a value near unity for a distant pair.

1 For a single airscrew, § = p, and the symbol y is not used.
§ W is the projection of the broken line C D E 4 on A B; w, is the projection of the reversed line4 E D Con B C.
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For the thrust and torque acting on a blade element we have the usual equations
dT = N(dL cos ¢ — dD sin ¢),
(1/r)dQ = N(dL sin ¢ + dD cos ¢),

where
aL = }pcW2C,dr,
dD = }pcW?Cpdr,
so that
(@T[dr) = mprsW? (Cp cos ¢ — C,, sin 4), .. .. .. .. .. .. (13)
(1/r) (dQ[dr) = mprsW? (C, sin ¢ + Cp cos ¢). .. .. .. .. .. .. (14)

For the total power loss (power input minus thrust power) we have
24dQ — VdT = NdL (rQ sin¢ — V cos ¢) + NdD (r2 cos ¢ + V sin ¢) .

By the geometry of Fig. 1 it follows that for the induced loss (defined here as the part of the
power loss depending on the lift of the blade elements),

dP, = NdL (rQ2 sin ¢ -- V cos ¢),
(dPy/dr) = nprsW2 Q2 sec ¢, C, sin B, . T .. .. .. (15)
and for the drag loss
dP, = NdD (rQ cos ¢ + V sin ¢),
(@P,[dr) = mprsW?>Q sec ¢, Cp cos B. . .. .. .. .. .. (16)
Equations (13-16) are all identical in form with those for a single airscrew.

Equations (10-16) with (3-6) will be developed into forms analogous to those of R. & M. 18492
and R. & M. 1674 in §7 and §8 respectively. The most practical and useful form is obtained by
considering g and y as small quantities and neglecting squares and products of g and y for both
airscrews. The resulting equations analogous to those of R. & M. 20353 are developed in §§3-5.

3. First Order Theory.—Consider B, ¥ as small quantities of the first order and wrize

uy == .u()ywl re

v, = ¥,,0,, (17)
and _
Moy, SIN g, — ¥, c?s doy = &oy (18)
oy COS do, + ¥y, SIN g, = Lo, ,
where either y=F,z=Bory=B,z=F,
Thus equation (11) gives for either airscrew,
W, =72 sec ¢, + &, Wy, + 0%, .. .. .. .. .. .. (19
and substitution in equation (12) gives .
(B — 7),792, sec ¢y, = Lo,7R, s€C S0y, + O(¥*) , .. .. .. (20
for either y=F,z=Bory= B,z=F. On the basis of equations (3—6) we have,
Hop = ¥og COS dop + O(y) .
vor = O(¥) , 21)
Hos = %or COS $ox + O() ,
Yop == — 2%ep SID dop + O(y) .
{76104) A2
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Since )
rQ, tan ¢, =V =702, tan ¢, ,
equation (20) may be written in the form
(B —7), = Lo,Ay, + O, .. .. . . .. .. (22
where 4, = (sin ¢, /sin ¢,,).
Also from (8) for either airscrew,
y = bsC, + O(»?) ,
where .. .. .. .. . . .o (23)
1/b = 4x, sin ¢,*,
so that sC, is of the same order as y.
If C, is given for both airscrews, equations (23) determine y and equations (20, 18 and 21)
dctermine B for both airscrews. Then equations (15) and (16) in the form
(AP,jdr) = mprs.Cr’ 2% sec® ¢y, B + O(»®) , .. . . . .. ..o (24
(AP,)dr) = mprs.Cpr2® sec® ¢y + O(y?) .. .. .. .. .. ..o (29)
give the power losses of either airscrew. In general it is convenient to consider sC, as a small
quantity of order y? so that both dP,/dr and dP,/dr are of order 2. To the first order the power
input to either airscrew is

(dQ/dr) = nprsri8® sec? ¢, (Cp sin ¢, -+ Cp cos ¢) + O(y?) . .. .. .. (26)
The further development analogous to that of R. & M. 20353 required to determine C, for

-either airscrew for given blade angle setting is given in §5, but it is convenient first to consider

the application of equations (24-26) to determine explicitly theé power input and power wastage
to the first order, for given C,, for the particular case of equal rotational speed and power input
for the two airscrews.

4. Special Case. Equal Rotational Speed and Power Input.—Equal Rotational Speed.—It
follows from equations (10) and (23) that equal rotational speed of the two airscrews implies

equal values of &, %, and b so that 4, is unity. Equation (22) then gives

B,=v,+ Cov. + 0% , .. - .. .. .. . .. .. (27
so that from (24)
(AP, [dr), = =pri® sec® ¢y (sCy), (v, + o, v,) + O00?), .. .. .. .o (28)

and using equations (21) :
Cop = %, COS? ¢y + O(y), Clop = %o (COS® ¢g — 2 sin? ¢y) + O(y)

and
(AP, }dr) . = npr (12 sec ¢o)® (SCL)p{vr + %0v5 COS2 ¢} + O(?), .. .. .. (29

(AP,]dr) g = npr (182 sec ¢,)® (SCL)a{ys + #ovr (COS® ¢y — 2 sin? ¢g)} + O(?) . .. (30)

Equal Rotational Speed and Power Input.—Equation (26) shows that equal power input to
the blade element at radius 7 combined with equal rotational speed implies that

(sCo)r — (sC) s = O(?)

7y —7vp = 0(»?) ;
equations (29) and (30) then become
(AP, [dr)y = mpr (72 sec ¢,)° sCry (1 + %, cOS® ¢) + O(»%),

(AP, [dr) g = mpr (r2 sec ¢,)® sCry (1 + x, COS? ¢y — 23, SIn® o) + O(¥*) . .. .. (32
" $R & M. 2035, equation (10). -

and (31)
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For the combination of two airscrews

(AP,y[dr); = mpr (r$2 sec ¢,)® 25C.y (1 + x, cos 2¢,) + O(3?) . .. .. .. (33)
Equations (31-33) and (25) transformed into equations for the coefficient p.,, p., of induced
drag power loss, analogous to equations (31) and (33) of R. & M. 20352, may be used to calculate
the power loss grading for all radii for a given distribution of sC, (equal for the two airscrews) ;
the corresponding blade angle distribution may be obtained from §5. The power input grading
(torque grading) may be obtained from equation (26) or more accurately (as in R. & M. 20353)
from equation (14) using the more accurate value of W obtained below in §6. In the latter
case the power input will not be exactly equal for the two airscrews if the values of sC, are equal.
The second order difference in sC, required to make the power inputs equal to the second order
is determined in §6. Or, the performance for a given blade angle distribution may be deduced
from the equations of §5; the blade angles at standard radius (0-7) might be adjusted to give
equal power input at that radius.

Example.—For the purpose of illustration equations (33), (25) and (26) have been used to
calculate the partial efficiency for a section at standard radius (0- ) for equal Totational speed
and power input. The formulae (deducible from equations (31-33), (23) ard (26)) are

'}’CL (1 + Mo cos? é0) + Cp

L —mnp= cos ¢y (Cosin ¢y + Cp COS &) (34)
1 o yC, (1 + %o COS? ¢y — 2"0 Slﬁ ¢0) + CD (35)
s = cos éy (C, sin ¢, + Cp cos )
| — o — €1+ xcos 2¢) + C, S (38)
e = cos ¢ (Cpsin ¢g + Cp cos ¢g) '
with
y = sCof(dxe in o) = bSCy . .. .. e o (3]

In Fig. 2 values of (1 — 5.) are plotted for a range of values of J for (1) a pair of contra-rotating
two bladers and (2) a pair of contra-rotating three-bladers ar.d for the following values of s, C,

and Cp:— s = 0-090, C,=0-56, C, = 0-017.

The values of s and C, are those at radius 0-7 for airscrew B in R. & M. 20214, while the value
of Cp is adjusted to give a partial efficiency for this radius equal to the calculated efficiency
(0-878) for the whole airscrew. The calculations correspond therefore, to a power input to each
airscrew of 2,000 h.p. at 450 m.p.h. equal to that assumed in R. & M. 20214 (a total of 4,000 h.p.
for the two airscrews) for the same diameter, rotational speed and height. They were made
for a range of values of J from 1:27 to 4-54* They are compared with the corresponding
efficiency figures for a single airscrew of double (the same total) number of blades and solidity
and also with airscrews having the same number of blades as one of the contra-rotating pairs
and the same total solidity. The equation corresponding to (36) for a single airscrew is

yC. + Cp,
1 — s = COS¢0(CL51n¢om .. .. .. .. .. (38

with (37) in which it must be remembered that values of %, and s must be used, appropriate to
the total number of blades and solidity. Thus the value of s for the single propeller has twice
the value for the correspondirg contra-rotating pair, and so the value of y in (38) would be double
that in (36) apart from thc change in », due to doubling the number of blades.

The results of Fig. 2 show that for the present case the increase of efficiency as between the
2-bladers (contra-rotating) and the 4-bladers (single-rotating) varies from 1-0 per cent. to 4-6
per cent., and the increase as between the 3-bladers (contra-rotating) and the 6-bladers (single-
rotatmg) varies from 1- 7 per cent. to 4-8 per cent. for the particular valuesof s, C L and C, chosen.

* The actual efﬁc1ency ﬁgures for the h\ghest values of j would in practice be reduced by the increase of C, due to
increased compressibility effect.
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5. The Relation between sC, and Blade Angle 6 to the First Order, for the General Case.— This
may be obtained by a similar method to that of R. & M. 20353, §3, as follows :—

Write
6 —¢p+e=0, .. .. .. - .. . .. .. .. .. (39
and
asC, = a + ¢
=0 — 8, .. .. .. .. .. .. .. .. .. (40)

where a and ¢ define the (straight line) lift curve as in R. & M. 20353, equation (11), and are,
in general, functions of the Mach number.

Comparison of (40) and (23) gives

bO =bp +ay +0(?* , .. -.. .. .. .. .. .. .o (41)
which with (22) determines 0, 0, as functions of y,, y; and so of (sC,) and (sC,); in the form
0, = (‘“br”) vyt God e F OB L . 42

¥y

withy = F, 2= B or y = B, z= F. Using the relation 4,4, = 1, the pair of equations
represented by (42) may then be solved for y,, y, in the form

(sC)y = (v/B), = {(@ + 1), O, — b.50,2,, @}/{(a + B)r (@ + B) s — brbalorles} + O(*) , (43)

which reduces to equation (13) of R. & M. 20353 on putting oz = (o = 0. In this pair of
equations, using (18) and (21) we have

Loy = %o COS dop COS o + O(y) , .. .. .. .. .. .o (44

Lop = %op (COS dop COS $or — 2 SIN oy SIN ¢,,) + O(y) , .. .. .. (45)
and ) )

App = 1/Age = SIN Pog/sin oy . .. .. .. . .. .- .. (46)

Special Case. For Equal Rotational Speed, using the results of §4 equation (43) becomes

(sC)r = v5/b

= {(a + b) Op — xob cOs? ¢, @ }/{(a + D)2 — x2b? cos® ¢,
(cos? ¢y — 2 sin? ¢,)} + O(y?%) ,
(SCL)B = '}’B/b

= {(a + b) O — x,b (cOs? ¢y — 2 sin? ) Og}/{(a + b)2 — %,2b% cos? &,
(cos? ¢y — 2 sin? ¢o)} + Q(¥?) . .. (47)

For equal rotational speed and equal power input to the blade element at radius » equation (42)
becomes (using 31)

o= (D)4 8,]r + 00,
and so

Op — Og =1y (Lor — Lop) + o(»*)
= 2y, sin? ¢, + O(7?)
= 1sC, sin ¢, + O(¥?) . .. .- .. .. .. .. .. (48)

This value is plotted against J in Fig. 3 for the values of sC, used in §4 and varies from 0-7 deg.
to 1-3 deg. over the range of J considered.
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6. Values of W and Q(dQ/dr) to the Second Order in y.—The value of W to the second order can
be obtained from equation (11) in the form

W, = 72, seC b0, + &,72,5¢C hn.7,

=78, sec ¢o, {1 + & 4,9} + O(»?) . .. .. .. .. .. (49)
The expressions for dT/dr and dQ/dr involve the factors sin ¢, cos ¢ which may be written,
sin ¢ = sin ¢, (1 + B cot ¢) + O(»?) , .. .. .. .. .. .. (30)
Cos ¢ == Cos ¢ (1 — B tan ¢) + O(»?) , .. .. .o .. . .. (3D
with
B, =7y, + LAy, + O0®) , .. .. . .. . . .. (32)

from (22). Equation (49) then gives
W2 sin ¢, = 72Q.2 tan ¢, sec o, {1 + [2&, + &0, COt ¢o,] 1,7,
+ v, cot ¢q,} + O(¥?) , .. .. (83)
W2 cos ¢, = 72, sec o, {1 + 28, — &, tan do,] 7, — 7, tan do,} + 002) 5 .. (54)
or

W2 sin ¢, = r22,% sec? ¢,, {sin ¢y, + 34,7, (4o, (3 — COS 2¢y,) — #y, SiN 24,

+ ¥, €os ¢o,} + O(%) , .. (59)
W2 cos ¢, = 7222 sec? ¢y, {COS ¢y, + 32,7, [0, SIN 29, — 7y, (3 + cOS 2¢,)]
— y, sin ¢y} + O(¥?) . .. .. (56)

In evaluating 2(dQ/dr) and V(4T /dr) it is reasonable to consider C,/C,, as before, as a small
quantity of the same order as y, and to write

Q(dQ|dr) = npr*QW?2 sin ¢ sC, {1 4+ (Cp/C.) cot ¢} + O(»°) , .. .. .. {57)
V(dT/dr) = 7pr*2 tan ¢, W2 cos ¢ sC, {1 — (C,/C,) tan ¢} + O(*) . .. .. (38)

In these expressions W2 sin ¢, W2 cos ¢, are given by equations (53-56) in which y is given by
y = bsC,,

so that the torque and thrust power loss grading may be evaluated as far as terms of order »*
if the value of sC, is known to this order for each airscrew. Equations (43-46) give the values
of sC, for each airscrew in terms of the blade angle settings.

Strictly speaking, equations (23) and (40) are only correct to the first order in y and «, but
it was suggested in R. & M. 20352 that in practice the curves of C, against « in the unstalled
range and of sC, against y over a considerable range of large values of J, are straight lines to a
higher order of approximation. The additional order of accuracy would then apply to equations
(43) since they are deducible from (23) and (40) by linear transformations; the values of sC,
deduced from (43) for given blade angles would then be sufficiently accurate when substituted
in (57) and (58) to give values of thrust and torque power correct as far as terms in y%. In any
case the value of power loss given by taking the difference between power input deduced from

(57) and useful power deduced from (58), will be consistent with (24) and (25) and correct to the
same order as the latter equations.
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Case of Equal Revolutions to Second Order.—Substitution of
Mop = Mop = %o COS ¢y ,
or =0,
vop = — 2% SIN ¢,

in (53-56), gives

W2 sin ¢, = #2022 tan ¢, sec ¢, {1 + v cot ¢,

+ %75 (Ot ¢y + sin @5 cos ¢o)} + O(»?) , .. (59)
W2 sin ¢, = 720t tan ¢, sec ¢, {1 -+ 75 cot ¢,

+ %y (cOt ¢ + 3 sin ¢4 cOs ¢4)} + O(?) , .. (60)
Wt cos ¢ = 7202 sec ¢ {1 — yptan ¢y + #y5 Sin ¢g COs o} + O(3?) , .. .. (61

Wt cos ¢ = 72022 sec ¢y {1 — 75 tan ¢, + xy; (2 tan ¢, + 3 sin ¢ cos ¢,)} + O(»2) . (62)

Equal Power Input to Second Order.—1It is evident that the difference C 17 — C.gwill be of order
y? and it is therefore reasonable to assume that C,, — C,; is of order y®. The condition of equal
power input will therefore be taken as .

(sC W2 sin ¢)p = (sC,W?sing), + O(y*) . .. .. . .. . .. .. (63)

Condition (63) may be satisfied by writing y, =y, =y in (59—62) since this is true to the ﬁrst
order, and putting

(sC)r = SC, (1 + x5y sin ¢, cOs @) , .. . .. .. .. .. (64)
(sCp)g = sC, (1 — »yy sin ¢, COs ¢,) .. .. .. .. .. .. (65)

in (63), where sC, is a mean value between the two airscrews. The final expressions for the
thrust and torque grading will be for either airscrew,

Q(dQ/dr) = npri 2% tan ¢, sec ¢o{sC, {1 + y [cot ¢,
+ o (cot ¢y + 2 sin @, cos B)]} + sCp cot ¢} ; ..  (66)
and for the front and back airscrews separately,
V(dT]dr), = mpri$2® tan ¢, sec ¢0(SC,_{1 + y [— tan ¢,

+ 23, sin ¢, cos ¢o]}— sC,, tan ¢0) , .. .. (67)
V(dT|dr)y = mprt2® tan ¢, sec ¢0(SCL{1 + y [— tan ¢,
+ 2%, (tan ¢, + sin ¢, cos ¢,);} — sC, tan qSo) . (68)

The difference between these expressions for torque and thrust power agrees with the first order
value of power loss given in (31-33). Expressions for the blade angle to the second order could
be deduced from §7, equation (76) below, but would be rather complicated.

7. Exact Transformation of Equations (11) and (12) into a Form Analogous to the Equations
of R. & M. 1849%—Write

u, =p, W, ,
Sl L e
vyz"':vwlx’]
where either y = F, z = B, or y = B, z = F, and g,, v, are functions of ¢,, ¢, (according to
equations (3-6), of ¢, only).
Write
psing—weosg =25, 1 Lm0

Hcose¢ 4 vsing =79 . ]
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These definitions are analogous to the first order definitions of (17) and (18). Write also

782 sec ¢y cos g = C ,

"rQsec gy sin g =D ; (71)
also by (10)
(7R tan ¢y)r = (72 tan ),
Then equations (11) and (12) become
W,=C,+ &w,, , .. .. .. .. .. .. .. .. .. (72)
w= W,tan y, = D, — {0, . .. .. .. .. .. .. (73)
“The pair of equations,
o D &
may be solved giving
= (D, — ¢,D)/(1 —¢2) . .. .. .. .. .. .. .. (75)

Then (72) gives
Wy = {Cy (1 - C}';z) + fny - Eyc:Dy}/(l - 4-}'4.1) ’ . L e s (76)
and substitution in (73), using (71), gives

D, D, D,
tan y, = tan ﬂy<1 - ¢, 17)/[1 — {8, 48 (ol &L, a}

— tan (1 — ¢, S0 #50 ﬁ) / { o g Snbusn B n 8.} @77)

& sin ¢, sin 8 YsIin ¢y, cOs B,

The two equations (77) determine y ., y and so in virtue of (8) (sC,); and (sC,), as functions of
¢z b5 0only, dor, Pop being known. Since equations (3)-(6) are only claimed to be correct to the
first order, the advantage of the present equations over first order equations is doubtful.

It would be possible to plot (sC,) against ¢, giving for each J a series of curves for various
values of ¢, and similarly for (sC,),, (Fig. 4). It would then be necessary to determine inter-
sections with (sC,)r against a and (sC,), against «, curves giving consistent values of ¢, ard ¢,
and this could be done by a very rapid successive approximation between the two figures. This
represents the analogue of the use of Chart Iin R. & M. 18492,

8. Eguations of the type of R. & M. 1674'.—From Fig. 1.
AC = w, cosec y .
Resolving parallel to AF, we have
ACcos (¢ — ) =72 — v,

giving
1w, = (rQ — v) sin y sec (¢ — »)
= (r£2 — v) tan y sec ¢/(1 + tan y tan ¢) , - . .. .. (78)
with tan y = sC /4% sin ¢ .

27
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For the front airscrew » = 0 and the equation becomes identical with equation (8) of R. & M.
16741. For the back airscrew v/r2 is of order y and might be calculated by writing «; = a.

V is then given by (Fig. 1)
V=rQtan¢ — GC — CD — HK
=rQtan¢ —w,secd —u —vtang . .. .. .. .. .. (79

The most convenient form for W is (Fig. 1)
W =HA — GB — HG
= (r2 —v)secd — w, tan ¢ , .. .. .. .. .. .. (80)
which is identical with equation (2) of R. & M. 16741 for v — 0.

The equations (78-80) may be transformed so as to involve rion-dimensional coefficients only,
by dividing by convenient multiples of R2,, RQ,.

The solution of the equations by the methods of R. & M. 16741 is straightforward apart from
the occurrence of the term involving v in equation (78) for the back airscrew. A suitable series
of values of the blade incidence « is first chosen for both airscrews for a series of standard values
of the radius. Values of C;, C,, for either screw are supposed known as function of «, and ¢ is
deduced from the equation

=0 — o .

Equations (78), (79), (80), (14), (15) and (16) then determine in succession values of w,, W, V,
2(dQ/dr), dP,/dr, dP,/dr (or of suitable coefficients of them) for both airscrews. In evaluating
the term v in equation (78) it should be sufficiently accurate to write ay = . It is finally
necessary to plot values of V or of its coefficients [, and J; and of 2(dQ/dr), dP,/dr, dP,/dr or
their coefficients against «, so as to deduce values of the thrust and power coefficients for the same
values of V at all radii before plotting against the radius * and integrating to obtain the power
input and power loss on the whole airscrew.

9. Recapitulation.—§1. Of the four basic assumptions as set out in §1, the first two are con-
sidered to be of general application to an airscrew, subject to any type of external interference.
The development of the equations is carried as far as possible without reference to the third
and fourth assumptions and these may require further empirical modification and would in fact
be modified as a result of increasing the distance between the two airscrews or varying their
diameters, efc.

§2. Equations are given of the most general form consistent with assumptions (i) and (ii) and
determine the total velocity W and the interference velocity w, of either screw on itself, in terms of
rR, ¢, and (u, v) the components of the interference velocity of the second screw ; also for the
thrust, torque and power loss grading in terms of W, C,, C, and ¢.

§3. In this section squares and higher powers of the interference velocity ratio are neglected.
This is probably not a serious limitation since it is very doubtful whether the original assumptions
hold beyond the first order in the interference velocities. Explicit equations are given for
(AP,/dr), (dQ/dr), (dP,/dr) to the first order.

§4. The equations of §3 are applied to the particular case of equal rotational speed and equal
power input. Explicit equations are given for the partial efficiency at a given radius and for
the induced loss for front and back airscrews separately.

* Coefficients of the type ¢, p,,;, Des ére plotted against 2 = (r/R)%.
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§5. This section gives first order results for given blade angles and also the first order difference
of blade angle between front and back airscrews for the case of equal angular velocity and power
input. This completes the formulae necessary to obtain the numerical results given in the
present note.

§6. Values of W, (dQ/dr) and (47 /dr) are given to the second order for known values of C,.
Difference of C, between the two airscrews is determined to the second order for equal revolutions
and power input. The resulting value of the difference between the thrust power and torque
power checks with the first order estimation of power loss in §3.

§7. In this section equations are obtained analogous to those on which the charts of R. & M.
18492 are based.

§8. In this section equations analogous to those of R. & M. 1674! are developed which could
be used in the absence of charts to calculate the exact performance of an airscrew on the basis
of assumption (1)-(iv).

LIST OF SYMBOLS

@ Reciprocal of slope of lift curve. Equation (40).
b Equation (23).
B suffix For “ back airscrew .
¢ Blade chord.
C suffix Mean value for contra-rotating pair of airscrews.
C, D Equation (71).
C,, C, Lift and drag coefficients of blade element.
dD Drag of blade element.
F suffix For ““front airscrew .
J ==aV/RQ.
dL Lift of blade element.
N Number of blades of either component.
dP, Induced power loss for blade elements.
dP, Drag power loss for blade elements.
dQ Torque on blade elements.
7, R Radius of blade element, tip radius.
s Solidity (= N¢/2a7) of either component.
S suffix For single airscrew.
dT Thrust on blade elements.

u#, v Components of interference velocity of front airscrew on back airscrew or
vice versa (Fig. 1).

V  Forward speed (Fig. 1).
W Resultant velocity at blade element (Fig. 1).
W, Fig. 1.
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List of Symbols—continued.

Interference velocity of either airscrew on itself (equation (1)).

Equation (2).

Denoting either front airscrew and back airscrew respectively, or vice versa
(equation (17)).

Indicating limiting value for zero lift.

Blade incidence.

Fig. 1; equation (9).

Fig. 1; equations (7) and (8).

Zero lift angle ; equation (39).

Equations (70), (18).

Efficiency.

Blade angle ; equation (39).

Equation (39).

Tip loss factor ; equation (1). #, is written for »(¢,).

Equation (22).

}Equations (69), (17).

Equations (70), (18).
Fig. 1. Equations (9), (10).
Angular velocity in radians per second.

Note. O(y?). The notation used in equation (19) efc. The statement

F(y) = Fi(y) + O(»")

implies that F(y) can be expanded in powers of y in the form

Fyy=f+vHh+va+. ..

and that

1 Lock and Yeatman

Fl('}’) "——"fo'l"?ﬁ’f‘?%z‘f‘- R N A w1 -
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Plane of rotatiom
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A ] rn F
F1c. 1 (). Front Airscrew.
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&
w
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A 4
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?a ¢
F T rn A

F1c. 1 (¢). Back Airscrew.

Fic. 1. Interference Velocity Components for a Contra-rotating Pair of Airscrews.
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APPENDIX C

INDEPENDENT DERIVATION OF LOCK'S TIP LOSS FACTOR FORMULA

In the text, Xo Wwas found by making O, or optimum planforms, the same between
Lock and Theodorsen. Now, however, the induced angles B will be made the same
between the two formulations.

The first thing will be to specialize Lock's theory to apply where the pro-
pellers are in the same plane. (The determination of Xy 1is the same whether they
are or are not in the same plane, as was seen in the text.) This specialization

makes the two equations for Coyr between equations (28) and (29) in appendix B,
become symmetric so that they are one

Co = Xo(cos2 ¢O - sin? ¢O) = r'XO (C1)
Then the induced angle of attack, equation (B27), becomes
B =Db(l + y)0 = b(l + r'Xy)o (cz2)

for either propeller, where

_ 1
b = 4XO sin ¢O (€3)

from equation (B23).

Now B 1is the induced angle of attack at the propeller plane, not the far wake.
The induced angle of attack from Theodorsen, therefore, must be multiplied by 1/2.
Also, the displacement velocity w multiplied by cos ¢O gives the velocity of the
vortex sheet normal to itself. If this is divided by Wy it is converted to an
induced angle. Thus, the equating of the induced angle, between Lock and Theodorsen,

yields
cos ¢O =B (C4)
with the right side given by equation (C2).

Next, Theodorsen's circulation function will be introduced, as in the text just

before equation (13),

vV -
SCLWO = OWO = Thax wV K(x) (C5)
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or

g _ J .

il sin ¢O K(x) (C6)
where

w o= w/V (c7)

Now equation (C4) can be written, by using equation (C2),
= - = -—_" = """ = (CB)
By using equation (C3), equation (C8) becomes

L _1___<¢ . r.)
5 cos ¢O 4 sin ¢O XO I

o = v = K(x) sin ¢g

Substituting V/Wy = sin ¢5 (fig. 1 of app. B) and multiplying by 4 sin ¢y result
in

sin 20 = <§L1+ xd>§§-x(x) (c9)
0

Solving for XO gives

1

= C

Yo X sin 2¢, - ' 1o
JK(x) 0 r

Now, the corresponding formula in the text is equation (17), which is
1

Xg = ko' ) (C11)
—_ r
qlwsl

Compare equations (ClO) and (Cll), which should be identical. They will be identical
if

kp' _ Tx

qQ'ws'  JK(x) sin 2¢g (c12)
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Substitute the following from equations (16) in the text, into equation (Cl2):

1 1 A
p' = 5'¢q0 cos ¢O = 3 sin ¢O cos ¢0 (2 = 0)
S )
4 4 sin ¢0 (C13)
J
. .
s!' = e K(x) sin ¢O J
Then the right side of equation (C12) is
X sin ¢, sin 20, = = sin 0. sin 20 (c14)
JK(x) sin ¢O 0 n 0 s' 0 0
and the left side is
l-sin ¢ os ¢
k2 Yo % o N o L gin b, cos ¢
= 3 . =5 sin ¢4 3 0 s 9q
: s
4 sin ¢O
xk 1 sin ¢
= =3 o sin 2¢O (C15)

Equating equations (Cl4) and (Cl5) gives

1
5 (Cls)

SHw
I
[}

which must be true in order for equations (Cl0) and (Cll) to be the same. But equa-
tion (Cl1l6) is in fact true, as may be seen from eguations (22) in the text.

Hence it is concluded that the two formulas, (C1l0) and (Cll), are indeed

equivalent, and it appears to be verified that the method given in the present paper
for determining XO, appendix D, is correct and consistent with Theodorsen and Lock.
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APPENDIX D

CALCULATION OF XO FOR DUAL-ROTATION PROPELLER AT A
GIVEN VALUE FOR J

1. Choose a set of values of X «corresponding to stations or sections on the
propellers at various radii. These values of x might well be those found in fig-
ure 2. The entire calculation is performed for each value of x.

2. Calculate the advance angle ¢O from

- i
¢O = 90° - tan 1 (3‘X>

3. For the values of x chosen in step 1, read a set of K(x) from the circula-
tion function curves (e.g., fig. 2) for the number of blades being considered (four
front and four back for the purposes of this paper.)

4. Calculate p', q', r', and s' from equations (16). Note that, since £

is taken to be zero in this calculation, ¢q0 = gin ¢O'

5. Calculate XO from equation (17). (The value of k/w was determined to
be 2.0 in the discussion following equation (17). (See egs. (22).)
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OPTIMIZATION OF DUAL-ROTATION PROPELLER WITH DRAG CONSIDERED
1. A value for J and a value for Cp must be given to start.
2. Tabulate X, from step 5 in appendix D.

3. Tabulate the preselected (g, £, and o for each x. For instance, these
might be for maximum lift-drag ratio all along the blade.

4. Calculate ¢q0 from equation (9).

5. Calculate ¢ from equation (12). In this step, a trial value for k is
needed. Equation (19) is an aid in guessing this.

6. Integrate dCp/dx over the range of x, from body to tip, and compare the
resulting Cp to the given Cp which must match.

EEE = 1T-fl—( 2 ¢ ) 40 ¢ (for both propellers)
= 5 | sec o)X q0 prop
This equation can be derived from equation (8). Set w2 = r202 gec? ¢O. Change r

to xR and use Cp = QQ/(on3d5).

7. Calculate

|
W=
Olb(%

Qi
e

8. Find Bp and By from equations (27).

9. Calculate the blade-angle distribution © from equation (23).
B + (Torsional deflection) = ¢O + BF +

Og + (Torsional deflection)

|
-
(o]
+
jor)
[vy]
+
Q

Items 7 and 9 define the propeller.
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CALCULATING PERFORMANCE OF GIVEN DUAL-ROTATION PROPELLER

AT OFF-DESIGN CONDITIONS

The problem may be stated as: given the propeller at some blade-angle setting
and the value of J, determine the torgue and thrust, or determine the power
absorption and efficiency.

The existence of initial distributions of (CL)F and (CL)B and hence of Op

and Op can be assumed. This may be a guess, or else they can be calculated immedi-
ately by assuming the induced angle of attack is zero.

1. Follow the steps in appendix D to obtain the function Xo applicable to the
given J.

2. Calculate ¢q0 from equation (9) (the same as step 4 in app. E).

3. Tabulate or store airfoil data so that C; and 2 can be found for any value
of «a. (Note that this is not the same kind of airfoil data as in step 3 of app. E,
which is preselected airfoil data.)

4. Tabulate ©Op, 0, and s from propeller-geometry information and the given
blade-angle setting.

5. Calculate Bp and By from equations (28). Initially, these might be set
equal to zero.

6. Solve equation (29) for a and oag.

7. Find new (CL)F and (CL)B from airfoil data using Op and Op from
step 6. Also find new Op and Og.

After completing step 7, it is possible to return to step 5 and loop through to
step 7 repeatedly until (Cy)y and (Cp)p converge on final values. At step 7 on
the last loop, find & and &y in addition to the 1ift coefficients. Then step 6
in appendix E shows how to get the power input. The efficiency is found as in equa-
tion (18), but by using equation (6) instead of equation (2). Note that in place
of o0 there are Op and Og. Therefore, the power formula in step 6, appendix E,
has to be appropriately modified. The same applies to equation (6) in the efficiency
calculation. This would conclude the calculation if arbitrary propeller theory were
not to be added.

If arbitrary theory is to be introduced, the return to step 5, after completing
step 7 on the last loop, would call for arbitrary propeller theoxry rather than equa-
tions (28). More specifically, the circulation can be easily found from (Cr)gp and
(C1,)g, which are found in step 7. From the circulation, the single-rotation part of
" the induced angle of attack Yy can be found, by arbitrary propeller theory, so
that By now contains arbitrary propeller theory. The tip loss factor Xg is no
longer used. The loop continues on to step 7. This should produce a rigorous
lifting-line performance calculation, but the introduction of arbitrary propeller
theory has to be regarded as a considerable escalation of computational effort.
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(a) Either airscrew.

G(H,K)

(b) Front airscrew.
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(c) Back airscrew.
Figure 1.- Interference velocity components for pair of

dual-rotation propellers.

41



1.0

~. \
LR S Y
b Yy

~ O Oy A w8
V7V,

NN
9 \\\ |
IEEEANN ‘
NN j
) NN
NN T
& \ N

ANAN
PEEEENEERNIANA A
K(x) N \\
| NEA'S
- N

) NN NN
NN TN \\\\<
3 \\ N \\‘_\_\
: \\\ N L T
o | \\ T}\,
. \\\\ T~
T
N
® e
(4] { 4 3 4 5 6 7
V +w
nd
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Figure 4.- Tip loss factors for single- and dual-rotation propellers
plotted against x; J = 5.1693, four blades single, eight blades
dual.
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Figure 5.- Typical presentation of X for single rotation for
four blades. Arrows show how typical points on curves shift
for dual rotation of eight blades (four front and four back).
Shifted points shown are for J = 5.1693. (See ref. 6.)
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